Math 115
Summer 2017 Lecture 15 $\sqrt{x y}$

Ch.6: working with Rational Expression what is a rational expression?

Polynomial
Polynomial

$$
\begin{aligned}
& \frac{2 x-10}{3 x-15}, \frac{x^{2}-4}{x^{2}+2 x-15}, \frac{3 x^{2}+5 x-8}{2 x^{2}+3 x-5} \\
& \frac{x^{3}-125}{x^{2}-25}
\end{aligned}
$$

How to Simplify rational expression:

1) factor numerator and denominator Completely.
2) Cross-out any common factor

Simplify $\frac{2 x-10}{x^{2}-25}=\frac{2(x-5)}{(x+5)(x-5)}=\frac{2}{x+5}$

Simplify $\frac{x^{2}-9}{x^{2}+8 x+15}=\frac{(x+3)(x-3)}{(x+5)(x+3)}=\frac{x-3}{x+5}$

Simplify:

$$
\begin{aligned}
& \frac{3 x^{3}-75 x}{2 x^{3}-250} \\
& =\frac{3 x\left(x^{2}-25\right)}{2\left(x^{3}-125\right)}=\frac{3 x(x+5)(x-5)}{2(x-5)\left(x^{2}+5 x+25\right)}
\end{aligned}
$$

$$
x^{3}-5^{3}=(x-5)\left(x^{2}+5 x+25\right) \rightarrow A^{3}-B^{3}
$$

Simplify:

$$
\begin{aligned}
& \frac{4 x-28}{x^{4}-49 x^{2}} \\
= & \frac{4(x-7)}{x^{2}\left(x^{2}-49\right)}=\frac{4(x-7)}{2\left(x^{2}+5 x+25\right)} \\
x^{2}(x+7)(x-7) & \frac{4}{x^{2}(x+7)}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{2 x^{2}-x-3}{2 x^{3}-3 x^{2}+2 x-3} \\
= & \frac{(2 x-3)(x+1)}{x^{2}(2 x-3)+1(2 x-3)} \\
= & \frac{(2 x-3)(x+1)}{(2 x-3)\left(x^{2}+1\right)} \\
= & \frac{x+1}{x^{2}+1}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}-x-3 \\
& P=-6 \\
& s=-1
\end{aligned}
$$

$$
-3,2
$$

$$
=2 x^{2}-3 x+2 x-3
$$

$$
=x(2 x-3)+1(2 x-3)
$$

$$
\begin{aligned}
& \text { Simplify: } \frac{x+5}{x^{2}-4 x-45}=\frac{1(x+5)}{(x-9)(x+5)}=\frac{1}{x-9} \\
& \begin{aligned}
\frac{x^{2}-4}{x^{3}+8} & =\frac{x^{2}-B^{2}}{x^{3}+2^{2}}+2^{3}
\end{aligned}=\frac{(x+2)(x-2)}{(x+2)\left(x^{2}-2 x+4\right)} \\
& \rightarrow A^{3}+B^{3}>
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \frac{4 x^{2}-25}{4 x^{2}-20 x+25}=\frac{(2 x)^{2}-5^{2}}{\begin{array}{c}
(2 x)^{2}-2(2 x)(5)+(5)^{2} \\
A^{2}-2 A B+B^{2}
\end{array}} \\
& =\frac{(2 x+5)(2 x-5)}{(2 x-5)^{2}} \\
& =\frac{(2 x+5)(2 x-5)}{(2 x-5)(2 x-5)} \\
& =\frac{2 x+5}{2 x-5}
\end{aligned}
$$

Excluded Values are those values that make the denominator equal to Zero.

$$
\begin{array}{lll}
\frac{2 x-5}{x-3} \quad \text { E.V. }: 3 \\
\text { why? } 3-3=0
\end{array} \quad \begin{aligned}
& \frac{x+7}{(x-5)(x+10)} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& (-10-5) S \text { \& }-10-5)(5+10)=0
\end{aligned}
$$

$\frac{x^{2}+3 x+13}{x^{2}-7 x-18}$ Is 2 an excluded Value?

$$
x^{2}-7 x-18
$$

$$
2^{2}-7(2)-18=4-14-18=-28
$$

what about

$$
\begin{equation*}
-2 ? \tag{Yes}
\end{equation*}
$$

$$
(-2)^{2}-7(-2)-18=4+14-18=0
$$

How to find excluded Value:

1) Denominator $=0$
2) Solve

Find all excluded values:

$$
\begin{aligned}
3 x+5 & =0 \\
3 x & =-5 \\
x & =-5 / 3
\end{aligned} \quad \text { E.V. }: \frac{-5}{3}
$$

$\frac{2 x-9}{x^{2}-16}$, find E.V. :

$$
\begin{aligned}
& x^{2}-16=0 \\
& (x+4)(x-4)=0
\end{aligned}
$$

E.V.: ± 4

Use Z.F.P.

$$
\begin{array}{cc}
x+4=0 & x-4=0 \\
x=-4 & x=4
\end{array}
$$

$\frac{?}{2-5 x-7}$
find all excluded Values

$$
\begin{aligned}
& 2 x^{2}-5 x-7 \\
& \text { E.V. } \frac{7}{2} \xi-1
\end{aligned}
$$

$$
2 x^{2}-5 x-7=0
$$

$$
(2 x-7)(x+1)=0
$$

$$
Z . \mp . P
$$

$$
2 x-7=0
$$

$$
x+1=0
$$

$$
\vdots=\frac{7}{2} \quad x=-1
$$

find all excluded Valves:
E.V.
$\frac{3 x+8}{2 x^{2}+x-3}$

$$
1 \varepsilon_{1}-\frac{3}{2}
$$

$$
\begin{aligned}
& 2 x^{2}+x-3=0 \\
& a=2, \quad b=1, \quad c=-3 \\
& b^{2}-4 a c=(1)^{2}-4(2)(-3)=25 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{25}}{4} \\
& =\frac{-1 \pm 5}{4} \quad x=\frac{-1+5}{4}=1 \\
& \quad x=\frac{-1-5}{4}=\frac{-3}{2}
\end{aligned}
$$

find all excluded values:

$$
\begin{array}{r}
7 x-2 \\
3 x^{2}-2 x-5
\end{array} \quad \begin{array}{|c}
\rightarrow \text { Den }
\end{array}=0 \text {, Solve }
$$

factoring Q-formula

$$
\begin{aligned}
&(3 x-5)(x+1)=0 \\
& \vdots \vdots \\
& x=\frac{5}{3} x=-1 \\
& \text { E.V.: } \frac{s}{3} \frac{\varepsilon}{1}-1
\end{aligned} \quad \begin{aligned}
& x=3, b=-2, c=-5 \\
& \\
& \\
&
\end{aligned}
$$

find all excluded Values:

$$
\frac{x^{2}-25}{3 x^{2}+13 x+4}
$$

$$
\text { Demo }=0 \text {, Solve }
$$

$$
3 x^{2}+13 x+4=0
$$

factoring

$$
x=-1 / 3 \quad x=-4
$$

$$
\left\{\begin{array}{rl}
a=3 & b=13 \quad c=4 \\
b^{2}-4 a c & =(13)^{2}-4(3)(4) \\
& =169-48=12
\end{array}\right.
$$

$$
=169-48=121
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

E.V. $-\frac{1}{3} \dot{\varepsilon}_{1}-4$

$$
\begin{aligned}
& x=\frac{-13 \pm \sqrt{121}}{6}=\frac{-13 \pm 11}{6} \\
& \left.x=\frac{-13+11}{6}=\frac{-1}{3}\right) x=\frac{-13-11}{6}=-4
\end{aligned}
$$

find all excluded Values

$$
\begin{array}{cl}
\frac{7 x}{(3 x-5)^{2}-81} & \text { Deno. }=0, \text { Solve } \\
& (3 x-5)^{2}-81=0 \\
(3 x-5)^{2}=81
\end{array}
$$

Squave-Root method
E.V.

$$
\begin{aligned}
& 3 x-5= \pm \sqrt{81} \\
& 3 x-5= \pm 9 \\
& 3 x-5=9 \quad 3 x-5=-9 \\
& x=\frac{14}{3} \quad x=\frac{-4}{3}
\end{aligned}
$$

find all exduded Values:

$$
\begin{aligned}
& (2 x+5)^{2}-49 \quad(2 x+5)^{2}-49=0 \\
& (2 x+5)^{2}=49 \\
& \text { use S.R.M. } \\
& \text { E.v. } \\
& 2 x+5= \pm \sqrt{49} \\
& 2 x+5= \pm 7 \\
& 2 x+5=7 \text { or } 2 x+5=-7 \\
& x=1 \\
& x=-6
\end{aligned}
$$

How to multiply rational expressions:

1) factor everything Completely
2) Cross-out any Common factors Vertically or diagonally.
3) Write the remaining factors in product form

$$
\begin{array}{r}
\frac{x^{2}-25}{x^{2}-8 x+15} \cdot \frac{x^{2}-9}{x^{2}+3 x}=\frac{(x+5)(x-5)}{(x-3)(x-5)} \cdot \frac{(x+3)(x-3)}{x(x+3)} \\
=\frac{x+5}{x}
\end{array}
$$

MuHiply:

$$
\begin{aligned}
& \frac{8 x^{2}-18}{2 x^{2}-5 x+3} \cdot \frac{x^{2}-9 x+8}{6 x^{2}+7 x-3}=\frac{2\left(4 x^{2}-9\right)}{(2 x-3)(x-1)} \cdot \frac{(x-8)(x-1)}{(3 x-1)(2 x+3)} \\
& 6 x^{2}+7 x-3 \\
& -18=-\frac{B^{2}}{P=-18}=\frac{2(2 x+3)(2 x-3)}{(2 x-3)(x-1)} \cdot \frac{(x-8)(x-1)}{(3 x-1)(2 x+3)} \\
& 6 x^{2}-2 x+9 x-3 \\
& 2 x(3 x-1)+3(3 x-1)
\end{aligned}=\frac{2(x-8)}{3 x-1} .
$$

Simplify:

$$
\begin{aligned}
& \frac{7 x^{2}-35}{x^{2}-25} \cdot \frac{x^{2}+3 x-10}{x^{2}+4 x} \cdot \frac{7 x^{2}+14 x-56}{x^{2}-4 x+4} \\
= & \frac{7\left(x^{2}-5\right)}{(x+5)(x-5)} \cdot \frac{(x+5)(x-2)}{x(x+4)} \cdot \frac{7\left(x^{2}+2 x-8\right)}{(x-2)(x-2)} \\
= & \frac{7\left(x^{2}-5\right)}{x-5} \cdot \frac{1}{x(x+4)} \cdot \frac{7(x+4)(x-2)}{x-2}=4 \frac{49\left(x^{2}-5\right)}{x(x-5)}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{36 x^{2}-64}{3 x^{2}+10 x+8} \cdot \frac{x^{2}-5 x-14}{3 x^{2}-13 x+12} \cdot \frac{x^{2}-9}{4 x^{2}-16 x-84} \\
= & \frac{4\left(9 x^{2}-16\right)}{(3 x+4)(x+2)} \cdot \frac{(x-7)(x+2)}{(3 x-4)(x-3)} \cdot \frac{(x+3)(x-3)}{4\left(x^{2}-4 x-21\right)} \\
= & \frac{4(3 x+4)(3 x-4)}{(3 x+4)(x+2)} \cdot \frac{(x-7)(x+2)}{(3 x-4)(x-3)} \cdot \frac{(x+3)(x-3)}{4(x-7)(x+3)} \\
= & \frac{4}{4}=1
\end{aligned}
$$

To divide rational expressions:

1) Convert division to multiplication of reciprocals
2) Proceed with steps on how to multiply rational expressions.

$$
\begin{aligned}
& \frac{9 x+18}{4 x^{2}-3 x} \div \frac{x^{2}-4}{4 x^{2}-11 x+6}=\frac{9 x+18}{4 x^{2}-3 x} \cdot \frac{4 x^{2}-11 x+6}{x^{2}-4} \\
& =\frac{9(x+2)}{x(4 x-3)} \cdot \frac{(4 x-3)(x-2)}{(x+2)(x-2)}=\frac{9}{x}
\end{aligned}
$$

Simplify:

$$
\text { 1) } \begin{aligned}
\frac{4 x+4}{2 x-3} \div \frac{x^{2}-1}{2 x^{2}+x-6}
\end{aligned}\left\{\begin{array}{l}
\text { 2) } \frac{15 x+5}{3 x^{2}-14 x-5} \div \frac{15}{3 x-12} \\
=\frac{4(x+1)}{2 x-3} \cdot \frac{(2 x-3)(x+2)}{(x+1)(x-1)}\left\{\begin{array}{l}
=\frac{4(x+1)}{(3 x+1)(x-5)} \cdot \frac{(3 x-4)}{15} \\
=\frac{(x-1}{x-1}
\end{array}\right. \\
=\frac{x-4}{x-5}
\end{array}\right.
$$

Due Tuesday: SG 17
Also work on SG18

